pp8大優點

因为结晶,PP的缩短率相当高,普通为1.8~2.5%。 聚丙烯管及其他材质之管路连接如PP与PVC,PP与铸铁管等相接时,将管 子插入连接套内再栓紧连接套上的螺丝即可,唯管径规格应符合连接套之尺寸. 聚丙烯管路与其他输送管路或阀类之接合,应以突缘接合之.先将突缘套入聚丙烯管上,以电焊套接上突缘接端零件,然后与其他管子端之突缘接合. PP—R与金属管件连接时,采用带金属嵌件的聚丙烯管件作为过渡,该管件与 PP—R采用热熔连接,与金属管采用丝扣连接。 PP—R的维卡软化温度为131℃,最高使用温度为95℃,长期使用温度为70℃,属耐热、保温节能产品。

pp

MZCR(多区循环反应器)抗冲共聚产品的乙烯含量可高达 22%(橡胶含量大于40%),还可生产含乙烯和1-丁烯的三元共聚产品。 7.小鼠以8g/kg剂量灌胃1~5次,未引起明显中毒症状。 大鼠吸入聚丙烯加热至210~220℃时的分解产物30次,每次2h,出现眼粘膜及上呼吸道刺激症状。 5、PP管采用法兰连接时,应严格对中,轴向最大允许偏差不大于2mm,不得采用强制拧紧螺栓的方法来调整,拧紧螺栓分两次进行,第一次按对角线均匀对称地拧一遍,然再拧紧螺栓。

pp: 聚丙烯复合化

该反应器仍采用Spheripol II气相反应器系统。 共聚反应器为立式圆筒式容器,上、下为球形封头,下部为沸腾床,主体材料为不锈钢,内表面抛光。 PP改性技术使得复合材料机械性能得到成倍的提升,极大的拓展了PP应用领域,提高了制品的性价比,推动了PP的工程化进程,也使得PP从通用塑料拓展应用于工程塑料领域,大大拓宽了它的应用范围。 近年,PP改性技术的研究发展迅速,越来越多新型技术应用于PP改性,PP综合性能提升明显、应用领域不断扩大,发展前景十分广阔。

  • 共混改性时,剪切力可能导致一部分大分子链被切断形成自由基并形成接枝或嵌段共聚物,这些新的共聚物也可以有效的对PP起到增容作用。
  • 高速绘图BOPP薄膜、管材、薄无纺布、高透明食品容器等特种材料市场发展前景良好。
  • 由于超冷凝态操作能够最有效地移走反应热,它能使反应器在体积不增加的情况下提高2倍以上的生产能力,对于投资的节省是非常可观的。
  • PP改性技术使得复合材料机械性能得到成倍的提升,极大的拓展了PP应用领域,提高了制品的性价比,推动了PP的工程化进程,也使得PP从通用塑料拓展应用于工程塑料领域,大大拓宽了它的应用范围。
  • PAM的协同作用有利于抑制土壤腾发的产生和加强雨水截留能力。

中国目前用于编织制品的量占40%~45%,其次是薄膜和注射制品占40%左右;丙纶及其他占10%~20%。 HMSPP的另外一个特点是具有较高的结晶温度和较短的结晶时间,从而允许热成型制件可以在较高温度下脱模,以缩短成型周期,可以在普通热成型设备上制成较大拉伸比、薄壁的容器。 聚丙烯树脂是四大通用型热塑性树脂(聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯)之一,以丙烯为原料,乙烯为共聚单体通过聚合反应生产制得。 市场上一般采用参加玻璃纤维、金属添加剂或热塑橡胶的办法对PP进行改性。

pp: PP管焊接法、

因此有关混杂填料填充废旧PP复合材料的制备和相关性能的研究已引起关注,涉及的填料主要包括不同无机填料混杂、无机/有机填料混杂。 经一定技术手段得到的改性PP,可具有优良的透明性和表面光泽度,甚至可以和典型的透明塑料(如PET、PVC、PS等)相媲美。 透明PP更为优越的是热变形温度高,一般可高于110℃,有的甚至可达135℃,而上述三种透明塑料的热变形温度都低于90℃。

pp

化学式为n,密度为0.89~0.91g/cm3,易燃,熔点189℃,在155℃左右软化,使用温度范围为-30~140℃。 在80℃以下能耐酸、碱、盐液及多种有机溶剂的腐蚀,能在高温和氧化作用下分解。 在PP成型过程中,将硅酸盐、碳酸钙、二氧化硅、纤维素、玻璃纤维等填料填充于聚合物中,达到PP耐热性提高、成本降低、刚性提高、成型收缩率降低等,但PP冲击强度、伸长率也会随之降低。 PP(聚丙烯)树脂分子呈非极性结晶型线型结构,表面活性低,无极性。

pp: 聚丙烯

当单体聚合时,加入的烯烃类单体与之进行共聚,聚合得到无规共聚物、嵌段共聚物和交替共聚物等,均聚PP的机械性能、透明性和加工流动性都得以提升。 茂金属催化剂形成的络合物是以不规则形状受到一定限制的过渡状态作为单一活性中心,达到精确控制相对分子质量及其分布、共聚单体含量、主链上的分布和高聚物晶型结构。 此工艺没有液体废料排出,排放到大气的烃类也很少,因此对环境的影响非常小,与其它工艺相比,该工艺更容易达到环保、健康和安全的各种严格规范。 该工艺的另一显著特点是可以配合超冷凝态操作,即所谓的超冷凝态气相流化床工艺(SCM)。

pp

工艺特点:(1)丙烯单体溶解在惰性液相溶剂中(如己烷中),在催化剂作用下进行溶剂聚合,聚合物以固体输粒状态悬浮在溶剂中,采用釜式搅拌反应器;(2)有脱灰和溶剂回收工序,流程长,较复杂,装置投资大,能耗高。 但生产易控制,产品质量好;(3)以离心过滤方法分离聚丙烯颗粒再经气流沸腾干燥和挤压造粒。 混杂复合化是两种以上填料填充聚合物制备复合材料的过程。 由于单一填料的局限性,混杂复合化可通过不同填料优势互补和协同作用,更好改善聚合物的综合性能。

pp: PP管FRPP

聚丙烯(PP)是目前第二大通用塑料,随着建筑、汽车、家电和包装等行业的发展,废旧PP成为近年来产量较大的废弃高分子材料之一。 目前,处理废旧PP的途径主要有:焚烧供能、催化裂解制备燃料、直接利用和再资源化。 考虑处理废旧PP过程中的技术可行性、成本、能量消耗和环境保护等因素,再资源化是目前最常用、有效和最为提倡的处理废旧PP途径。 聚丙烯纤维是所有化学纤维中是最轻的,其密度为(0.90~0.92)g/cm3,具有强度高、韧性好,耐化学品性和抗微生物性好及价格低等优点,用玻璃纤维增强改性或用橡胶、SBS改性过的聚丙烯被大量用于制作建筑工程模板发泡后的聚丙烯可用于制作装饰材料。

  • 合金化是将废旧PP与其他高分子材料进行混合,制备宏观均匀材料的过程。
  • 市场上一般采用参加玻璃纤维、金属添加剂或热塑橡胶的办法对PP进行改性。
  • 接枝改性是向其大分子链上引入极性基团,实现改善PP的共混性、相容性和粘结性,达到克服难共混、难相容与难粘接的缺点。
  • 因为结晶,PP的缩短率相当高,普通为1.8~2.5%。
  • HMSPP具有较高的熔体强度和拉伸粘度,其拉伸粘度随剪切应力和时间的增加而增加,应变硬化行为促使泡孔稳定增长,抑制了微孔壁的破坏,开辟了聚丙烯挤出发泡的可能性。

管壁不应有擦伤沟槽和碰撞形成的明显凹陷,管子弯曲处不得有裂纹、结疤、烧伤、折皱、分层等缺陷存在,如有上述缺陷,应完全清除,被清除的部位壁厚的减薄,应在壁厚减薄率的允许范围内,否则作报废处理。 pp 牢固的连接性能—–frpp管材热熔接口的强度高于管材本体,接缝不会由于土壤移动或载荷的作用而断开。 PP管是一种无毒、卫生、耐高温且可回收利用的管型,主要应用于建筑物室内冷热水供应系统,也广泛适用于采暖系统。 聚丙烯是重要的通用塑料之一,无论是从绝对数量上,还是从应用的广度与深度上都属发展最快的品种。

pp: 聚丙烯发展简史

抗冲共聚产品的乙烯含量可高达17% (橡胶含量大于30%)的抗冲共聚产品。 UNIPOL工艺具有简单、灵活、经济和安全的特点;该工艺只用很少的设备就能生产出包括均聚物、无规共聚物和抗冲共聚物在内的全范围产品,可在较大操作范围内调节操作条件而使产品性能保持均一。 因为使用的设备数量少而使维修工作量小,装置的可靠性提高。 由于流化床反应动力学本身的限制,加上操作压力低使系统中物料的贮量减小,使得该工艺比其它工艺操作安全,不存在事故失控时设备超压的危险。

pp

Unipol气相聚丙烯工艺是美国联碳公司(UCCP)和壳牌公司于二十世纪八十年代开发的一种气相流化床聚丙烯工艺,是将应用在聚乙烯生产上的流化床工艺移植到聚丙烯生产中,并获得成功。 该工艺采用高效催化剂体系,主催化剂为高效载体催化剂,助催化剂为三乙基铝、给电子体。 聚丙烯, 一种塑料, 它是一种高密度、无侧链、高结晶必的线性聚合物,具有优良的综合性能。 常见制品:盆、桶、家具、薄膜、编织袋、瓶盖、汽车保险杠等。

pp: Translations of pp

针对这方面的研究结果表明:废旧PP和滑石粉填充废旧PP复合材料在低温下的断裂均为脆性行为,EOC(乙烯-辛烯共聚物)加入可显著改善复合材料的抗冲击性能;EOC增韧滑石粉填充废旧PP复合材料的动态力学行为并不随着回收次数增加而变化。 复合化是将废旧PP与非高分子材料混合制备复合材料的过程,是实现废旧PP高性能化、功能化的主要途径。 废旧PP复合化可改善其刚性、强度、热学、电学等物理与力学性能,降低成本等。 由于绝大多数弹性体与废旧PP不相容,界面黏结较差,在加工和使用过程存在相分离,影响其性能。 为改善废旧PP合金界面相容性,增强界面黏结,许多学者开展了广泛研究,发现了两种能增强共混材料的界面黏结,提高共混材料的储能模量、损耗模量和体系黏度的增容剂。

pp

聚丙烯可用于制作温室气蓬、地膜、培养瓶、农具、鱼网等,制作食品周转箱、食品袋、饮料包装瓶等。 与废旧PET(聚对苯二甲酸乙二酯)反应性共混制成多功能废旧PET,将多功能废旧PET与聚丙烯原位成纤复合制成的原位成纤复合材料。 该复合材料具有废旧PET形成异形微纤、废旧PET微纤与PP基体树脂间形成适度柔性强结合的界面等结构特征,废旧PET与PP复合制备的原位成纤复合材料的韧性刚性均比PP明显提高,力学性能的重现性相当好。 将我国每年大量产生的废弃物即废旧PET资源化,具有显著的经济和社会效益。 我国主要将聚丙烯这种材料应用在食品包装、家用物品、汽车、光纤等领域。

pp: pp材质

作为改性塑料行业,聚丙烯的高性价比、多功能化和工程化始终是摆在面前的重要任务。 HMSPP的应变硬化行为是取得高拉伸比和涂覆速度快的关键因素。 使用HMSPP可获得较高的涂覆速度和较薄的涂层厚度。 pp HMSPP具有较高的熔体强度和拉伸粘度,其拉伸粘度随剪切应力和时间的增加而增加,应变硬化行为促使泡孔稳定增长,抑制了微孔壁的破坏,开辟了聚丙烯挤出发泡的可能性。

在混合、混炼过程中向PP(聚丙烯)基体中添加有机或无机助剂等得到性能优异的PP复合材料,主要包括:填充改性、共混改性等。 pp 针对聚丙烯在低温下的抗冲击性能差、耐候性不佳、表面装饰性差以及在电、磁、光、热、燃烧等方面的功能性与实际需要的差距,对聚丙烯加以改性,成为当前塑料加工发展最为活跃的,取得成果最为丰盛的领域。 聚丙烯具有良好的机械性能,可以直接制造或改性后制造各种机械设备的零部件,如制造工业管道、农用水管、电机风扇、基建模板等。 改性的聚丙烯可模塑成保险杠、防擦条、汽车方向盘、仪表盘及车内装饰件等,大大减轻车身自重达到节约能源的目的。 欧美各国用于注塑制品占总消费量的50%,主要用作汽车、电器的零部件,各种容器、家具、包装材料和医疗器材等;薄膜占8%~15%,聚丙烯纤维(中国习称丙纶)占8%~10%;建筑等用的管材和板材占10%~15%,其他为10%~12%。

pp: 聚丙烯纺织和印刷工业

PP(聚丙烯)交联改性可以使其力学性能、耐热性以及形态稳定性得到改善,成型周期缩短。 聚丙烯交联改性主要方法有化学交联改性、辐射交联改性,它们主要区别在于交联机理不同、活性源不同;化学交联改性是通过添加交联助剂来实现聚丙烯改性,辐射交联改性主要是通过强辐射或强光来实现,由于辐射交联改性对PP厚度要求使得该法普及困难。 pp 目前硅烷接枝交联法由于其能够制备出性能优良的材料而发展迅速,硅烷接枝交联法生产的PP强度高、耐热性好、熔体强度高、化学稳定性强、耐腐蚀性能好。 采用液相本体法生产聚丙烯,是在反应体系中不加任何其他溶剂,将催化剂直接分散在液相丙烯中进行丙烯液相本体聚合反应。

该技术通过将反应器内液相的比例提高到45%,可使现有的生产能力提高200%。 由于液体含量多少不是流化床不稳定、形成聚合物结块的基本因素,因此该技术关键的操作变量是膨胀床的密度及膨胀松密度与沉降松密度的比例。 由于超冷凝态操作能够最有效地移走反应热,它能使反应器在体积不增加的情况下提高2倍以上的生产能力,对于投资的节省是非常可观的。

pp: Meaning of pp in English

国产聚丙烯的另一个主要消费领域是薄膜,占总消费的 20%左右,主要是BOPP(双向拉伸聚丙烯薄膜)。 在未来的几年里,纺织产品的比例将逐渐下降,而注塑产品、管材和板材的比例将会增加,根据专家对聚丙烯行业发展的预测,到2020年我国对聚丙烯的需求量有可能达到2370万吨左右。 纺织产品、注塑产品、薄膜仍是我国聚丙烯的主要需求领域,而管材、板材、纤维等领域的年度需求增长迅速,国内对聚丙烯的需求也迅速增长。 高速绘图BOPP薄膜、管材、薄无纺布、高透明食品容器等特种材料市场发展前景良好。 HMSPP专用树脂解决了普通聚丙烯热成型困难的问题,可在普通热成型设备上成型较大拉伸比的薄壁容器,加工温度范围较宽,工艺容易掌握,容器壁厚均匀。 混有HMSPP的普通聚丙烯比纯普通聚丙烯具有较高的加工温度和加工速度,制成的薄膜透明性也好于普通聚丙烯。

由香港SEO公司 featured.com.hk 提供SEO服務

Similar Posts